代表性论文专著
70 Xuefeng Zhang, Liwei Wang*, Zixuan Wang, Lemin Wang, Zihan Zhang. Non-steady thermodynamic characteristics of a pilot-scale organic Rankine cycle system with a thermally-driven pump[J], Energy, 2022, 252: 123993.
69 Tao Xuan, Liwei Wang*. Eutectic electrolyte and interface engineering for redox flow batteries[J], Energy Storage Materials, 2022, 48: 263-282.
68 Bo Zhang, Liwei Wang*, Chen Zhang, Shaofei Wu. High-performance cellulose nanofiber-derived composite films for efficient thermal management of flexible electronic devices[J], Chemical Engineering Journal, 2022, 439: 135675.
67 Chen Zhang, Guoliang An, Liwei Wang*, Shaofei Wu. Multi-stage ammonia production for sorption selective catalytic reduction of NOx[J], Frontiers in Energy, 2022, https://doi.org/10.1007/ s11708-021-0797-1.
66 Guoliang An, Shaofei Wu, Liwei Wang*, Chen Zhang, Bo Zhang. Comparative investigations of sorption/resorption/cascading cycles for long-term thermal energy storage[J], Applied Energy, 2022, 306: 117991.
65 Shaofei Wu, Guoliang An, Liwei Wang*, Chen Zhang. A thermochemical heat and cold control strategy for reducing diurnal temperature variation in the desert[J], Solar Energy Materials and Solar Cells, 2022, 235: 111460.
64 Shaofei Wu, Guoliang An, Liwei Wang*, Chen Zhang. Smart temperature difference management in summer desert enabled by ammonia-based resorption cycle[J], Energy Conversion and Management, 2022, 254:115274.
63 Chen Zhang, Shaofei Wu, Guoliang An, Liwei Wang*. Resorption thermal energy storage strategy based on CaCl2/MnCl2-NH3 working pair for battery electric vehicles[J], Chemical Engineering Journal, 2022, 441:136111.
62 Peng Gao, Xinyu Wei, Liwei Wang*, Fangqi Zhu. Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery[J], Energy, 2022, 244:123215.
61 Peng Gao, Hao Hu, Shengxiang Jin, Shu Wang, Yanlin Chen, Weidong Wu, Qiguo Yang, Fangqi Zhu, Liwei Wang*. Solar-driven compression-assisted desorption chemisorption refrigeration/cold energy storage system[J], Energy Conversion and Management, 2022, 258:115474.
60 Jiao Gao, Liwei Wang*, Yicong Tian. Numerical and experimental investigation of multi-halide chemisorption system for exhaust gas heat recycling[J], Applied Thermal Engineering, 2021, 194: 117118.
59 Guoliang An, Xiaoxiao Xia, Shaofei Wu, Zhilu Liu, Liwei Wang*, Song Li*. Metal-organic frameworks for ammonia-based thermal energy storage[J], Small, 2021, 17: 2102689.
58 Peng Gao, Liwei Wang*, Fangqi Zhu. A novel hybrid solid sorption-compression refrigeration technology for refrigerated transportation and storage[J], International Journal of Refrigeration, 2021, 122: 1-10.
57 Peng Gao, Liwei Wang*, Fangqi Zhu. Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck[J], Applied Energy, 2021, 290: 116756.
56 Zhilu Liu, Guoliang An, Xiaoxiao Xia, Shaofei Wu, Song Li*, Liwei Wang*. The potential use of metal–organic framework/ammonia working pairs in adsorption chillers[J], Journal of Materials Chemistry A, 2021, 9: 6188-6195.
55 Zixuan Wang, Bo Zhang, Liwei Wang*, Shuai Du, Ruifeng Ma, Beibei Zhao. Analysis of a cascading power cycle without electric pumps for recovering waste heat from vanadium slag[J], International Journal of Energy Research, 2021, 45:9270–9283. (E4)
54 Zixuan Wang, Liwei Wang*, Lei Zhou, Shuai Du, Shengzhi Xu. Experimental investigation on a small-scale ORC system with a pump driven by internal multi-potential[J], Science China Technological Science, 2021, 64: 1599-1610.
53 Zixuan Wang, Haiyu Li, Xuefeng Zhang, Liwei Wang*, Shuai Du, Chao Fang. Performance analysis on a novel micro-scale combined cooling, heating and power (CCHP) system for domestic utilization driven by biomass energy[J], Renewable Energy, 2020, 156:1215-1232.
52 Zixuan Wang, Shuai Du, Liwei Wang*, Xin Chen. Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery[J], Renewable Energy, 2020, 146: 651-661.
51 Guoliang An, Yunfei Li, Liwei Wang*, Jiao Gao. Wide applicability of analogical models coupled with hysteresis effect for halide/ammonia working pairs[J], Chemical Engineering Journal, 2020, 394:125020.
50 Guoliang An, Liwei Wang*, Yiheng Zhang. Overall evaluation of single- and multi-halide composites for multi-mode thermal-energy storage[J], Energy, 2020, 212: 118756.
49 Jiao Gao, Yicong Tian, Liwei Wang*, Xuefeng Zhang, Guoliang An. Investigation on bi-salt chemisorption system for long term energy storage[J], Chemical Engineering Science, 2020, 221: 115699.
48 Guoliang An, Yiheng Zhang, Liwei Wang*, Bo Zhang. An advanced composite sorbent with high thermal stability and superior sorption capacity without hysteresis for a better thermal battery[J], Journal of Materials Chemistry A, 2020, 8: 11849–11858.
47 Peng Gao, Liwei Wang*. Investigation on the air-source chemisorption heat pump for the severely cold regions[J], Applied Thermal Engineering, 2020, 179: 115694. (S6)
46 Guoliang An, Liwei Wang*, Jiao Gao. Two-stage cascading desorption cycle for sorption thermal energy storage[J], Energy, 2019, 174: 1091-1099.
45 Z.X. Wang, L.W. Wang*, P. Gao, Y. Yu, R.Z. Wang. Analysis of composite sorbents for ammonia storage to eliminate NOx emission at low temperatures. Applied Thermal Engineering, 2018, 128(5): 1382-1390.
44 Y. Yu, L.W. Wang, G.L. An. Experimental study on sorption and heat transfer performance of NaBr-NH3 for solid sorption heat pipe. International Journal of Heat and Mass Transfer, 2018, 117: 125-131
43 L.W. Wang*, L. Jiang, J. Gao, P. Gao, R.Z. Wang. Analysis of resorption working pairs for air conditioners of electric vehicles. Applied Energy, 2017, 207(1): 594-603
42 J. Gao, L.W. Wang, R.Z. Wang, Z.S. Zhou. Solution to the sorption hysteresis by novel compact composite multi-salt sorbents. Applied Thermal Engineering, 2017, 111(25): 580-585.
41 Y. Yu, L.W. Wang, L. Jiang, P. Gao, R.Z. Wang. The feasibility of solid sorption heat pipe for heat transfer. Energy Conversion and Management, 2017, 138(15): 148-155
40 Z.S. Zhou, L.W. Wang*, L. Jiang, P. Gao, R.Z. Wang. Non-equilibrium sorption performances for composite sorbents of chlorides–ammonia working pairs for refrigeration. International Journal of Refrigeration, 2016, 65: 60-68.
39 L. Jiang, F.Q. Zhu, L.W. Wang*, C.Z. Liu, R.Z. Wang. Experimental investigation on a MnCl2–CaCl2–NH3 thermal energy storage system. Renewable Energy, 2016, 91: 130-136.
38 L. Jiang, L.W. Wang*, Z.S. Zhou, F.Q. Zhu, R.Z. Wang. Investigation on non-equilibrium performance of composite adsorbent for resorption refrigeration. Energy Conversion and Management, 2016, 119(1): 67-74.
37 F.Q. Zhu, L. Jiang, L.W. Wang*, R.Z. Wang. Experimental investigation on a MnCl2-CaCl2-NH3 resorption system for heat and refrigeration cogeneration. Applied Energy, 2016, 181(1): 29-37.
36 P. Gao, X.F. Zhang, L.W. Wang*, R.Z. Wang, D.P. Li, Z.W. Liang, A.F. Cai. Study on MnCl2/CaCl2–NH3 two-stage solid sorption freezing cycle for refrigerated trucks at low engine load in summer. Energy Conversion and Management, 2016, 109(1): 1-9.
35 P. Gao, L.W. Wang*, R.Z. Wang, X.F. Zhang, D.P. Li, Z.W. Liang, A.F. Cai. Experimental investigation of a MnCl2/CaCl2-NH3 two-stage solid sorption freezing system for a refrigerated truck. Energy, 2016, 103(15): 16-26.
34 P. Gao, L.W. Wang*, R.Z. Wang, D.P. Li, Z.W. Liang. Optimization and performance experiments of a MnCl2/CaCl2–NH3 two-stage solid sorption freezing system for a refrigerated truck. International Journal of refrigeration, 2016, 71: 94-107.
33 L. W. Wang, C. Z. Liu, L. Jiang, Y. J. Zhao, R. Z. Wang. Performance of a resorption cycle for recovering the waste heat from vehicles. Science and Technology for the Built Environment, 2015, 21(3): 280-289,
32 P. Gao, L. Jiang, L.W. Wang*, R.Z. Wang, F. P. Song. Simulation and Experiments on an ORC System with Different Scroll Expanders Based on Energy and Exergy Analysis. Applied Thermal Engineering, 2015, 75: 880-888.
31 P. Gao, L.W. Wang*, R.Z. Wang, L. Jiang, Z.S. Zhou. Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source. Energy, 2015, 91: 324-333.
30 L.W. Wang, A.P. Roskilly, R.Z. Wang. Solar Powered Cascading Cogeneration Cycle with ORC and Adsorption Technology for Electricity and Refrigeration. Heat Transfer Engineering. 2014, 35(11-12): 1028-1034
29 L. Jiang, L.W. Wang*, R.Z. Wang, P. Gao, F.P. Song. Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer. Energy, 2014, 71: 377-387.
28 L. Jiang, L.W. Wang*, R.Z. Wang. Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. International Journal of Thermal Science. 2014, 81: 68-75.
27 L.W. Wang, F. Ziegler, A.P. Roskilly, R.Z. Wang, Y.D. Wang. A resorption cycle for the cogeneration of electricity and refrigeration. Applied Energy, 2013, 106: 56–64.
26 L.W. Wang, S.J. Metcalf, R.E. Critoph, Z. Tamainot-Telto, R. Thorpe. Two types of natural graphite host matrix for composite activated carbon adsorbents. Applied Thermal Engineering, 2013, 50 (2): 1652–1657.
25 J. Wang, L.W. Wang*, W.L. Luo, R.Z. Wang. Experimental study of a two-stage adsorption freezing machine driven by low temperature heat source. International Journal of Refrigeration, 2013, 36(3): 1029–1036,
24 Z.Q. Jin, B. Tian, L.W. Wang*, R.Z. Wang. Comparison on Thermal Conductivity and Permeability of Granular and Consolidated Activated Carbon for Refrigeration. Chinese Journal of Chemical Engineering, 2013, 21(6): 676-682.
23 L. Jiang, L.W. Wang*, Z.Q. Jin, R.Z. Wang, Y.J. Dai. Effective thermal conductivity and permeability of compact compound ammoniated salts in the adsorption/desorption process. International Journal of Thermal Sciences, 2013, 71: 103-110
22 Z.Q. Jin, L.W. Wang*, L. Jiang, R.Z. Wang. Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process. Heat Mass Transfer, (2013) 49:1117–1124
21 L.W. Wang, S.J. Metcalf, R. Thorpe, R.E. Critoph, Z. Tamainot-Telto. Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon, 2012, 50: 977 –986.
20 L. Jiang, L.W. Wang*, Z.Q. Jin, B. Tian, R.Z. Wang. Permeability and thermal conductivity of compact adsorbent of salts for sorption refrigeration. ASME-Heat Transfer, 2012, 134(10): 104503-6.
19 L.W.Wang, S.J. Metcalf, R. Thorpe, R.E. Critoph, Z. Tamainot-Telto. Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid. Carbon 2011, 49(14): 4812-19.
18 L.W. Wang, Z. Tamainot-Telto, R. Thorpe, R.E. Critoph, S.J. Metcalf, R.Z. Wang. Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renewable Energy, 2011, 36: 2062-2066.
17 L.W. Wang, Z. Tamainot-Telto, S.J. Metcalf, R.E. Critoph, R.Z. Wang. Anisotropic thermal conductivity and permeability of compacted expanded natural graphite Applied Thermal Engineering, 2010, 30(13): 1805-1811
16 L.W. Wang, R.Z. Wang, R.G. Oliveira. A Review on Adsorption Working Pairs for Refrigeration. Renewable and Sustainable Energy Reviews. 2009, 13(3): 518-534.
15 L.W. Wang, H.S. Bao, R.Z. Wang. A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat. Renewable Energy, 2009, 34: 2373–2379
14 L.W. Wang, R.Z. Wang, Z.Z. Xia, J.Y. Wu. Studies on heat pipe type adsorption ice maker for fishing boats. International Journal of Refrigeration, 2008, 31(6 ): 989-997.
13 L.W. Wang, R.Z. Wang, Z.S. Lu, C.J. Chen, K. Wang, J.Y. Wu. The performance of two adsorption ice making test units using activated carbon and a carbon composite as adsorbents. Carbon, 2006, 44:2671-2680.
12 L.W. Wang, R.Z. Wang, Z.S. Lu, C.J. Chen, J.Y. Wu. Comparison of the Adsorption Performance of Compound Adsorbent in a Refrigeration Cycle with and without Mass Recovery. Chemical Engineering Science. 2006, 61 (11): 3761-3770.
11 L.W. Wang, R.Z. Wang, Z.S. Lu, Y.X. Xu, J.Y. Wu. Split heat pipe type compound adsorption ice making unit for fishing boats. International Journal of Refrigeration, 2006, 29: 456–468.
10 L.W. Wang, R.Z. Wang, J.Y. Wu, Y.X. Xu, S.G. Wang. Design, simulation and performance of a waste heat driven adsorption ice maker for fishing boat. Energy, 2006, 31:244-259.
9 L.W. Wang, R.Z. Wang, Z.S. Lu, C.J. Chen. Studies on Split Heat Pipe Type Adsorption Ice-making Test Unit for Fishing Boats: Choice of Heat Pipe Medium and Experiments under Unsteady Heating Sources. Energy Conversion and Management, 2006, 47(15-16):2081-2091.
8 L.W. Wang, R.Z. Wang, J.Y. Wu, K. Wang. A new type adsorber for adsorption ice maker on fishing boats,Energy Conversion and Management, 2005, 46: 2301-2316.
7 L.W. Wang, R.Z. Wang, J.Y. Wu, K. Wang. Research on the chemical adsorption precursor state of CaCl2-NH3 for adsorption refrigeration. Science in China, Ser.E, 2005, 48(1):70-82.
6 L.W. Wang, R.Z. Wang, Z.Z. Xia, J.Y. Wu. Design of Heat Pipe Type Adsorption Ice Maker for Fishing Boats. Chinese J Chem Eng, 2005, 13(3): 403-410.
5 L.W. Wang, R.Z. Wang, J.Y. Wu, K. Wang. Compound adsorbent for adsorptin ice maker on fishing boats, International Journal of Refrigeration, 2004, 27(4): 401-408.
4 L.W. Wang, R.Z. Wang, J.Y. Wu, K. Wang, S.G. Wang. Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of adsorption pair, Energy Conversion and Management, 2004,45:2043-2057.
3 L.W. Wang, R.Z. Wang, J.Y. Wu, K. Wang, Adsorption performances and refrigeration application of adsorption working pair of CaCl2-NH3, Science in China, Ser.E, 2004, 47(2):173-185.
2 L.W. Wang, J.Y. Wu, R.Z. Wang, Y.X. Xu, S.G. Wang. Experimental study of a solidified activated carbon-methanol adsorption ice maker. Applied Thermal Engineering, 2003, 23:1453-1462.
1 L.W. Wang, J.Y. Wu, R.Z. Wang, Y.X. Xu, S.G. Wang, X.R. Li. Study on the performance of activated carbon-methanol adsorption systems concerning heat and mass transfer. Applied Thermal Engineering, 2003, 23:1605-1617.